		_					
Reg. No.:						200	

Question Paper Code: 80123

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third/Fourth Semester

Electronics and Communication Engineering

EC 8491 — COMMUNICATION THEORY

(Common to Geoinformatics Engineering/ Computer and Communication Engineering)

(Regulation 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Why DSBFC-AM is bandwidth inefficient when compared with single sideband AM?
- 2. Mention any four advantages of having RF amplifier in AM receiver.
- 3. Differentiate narrowband from wideband FM.
- 4. Define transmission bandwidth.
- 5. What is the difference between random variable and random process?
- 6. When a random process is said to be strict sense or strictly stationary?
- 7. Give the formula for finding the Noise Figure.
- 8. Define equivalent noise temperature of a system.
- 9. What do you mean by sampling rate?
- 10. How the multiplexing of digital signals can be accomplished?

PART B __ (5 x 13 = 65 marks)

			PART B — $(5 \times 13 = 65 \text{ marks})$	
11	. (a) (i)	A 10 kW carrier wave is amplitude modulated at 80% modulation by a sinusoidal modulating signal. Calcul sideband power, total power and the transmission efficiency AM wave.	ate the
		(ii	 Explain the working of Super heterodyne receiver with diagram. 	a neat (9)
			Or	
	(b)	E.	plain in detail the generation and demodulation of DSB-SC	with a
	(D)		nple diagram.	(13)
12.	(a)		plain the characteristics and features of demodulation of FM than neat diagram.	I signal (13)
			Or	
	(b)	(i)	Discuss about the need for frequency translation.	(5)
		(ii)	What does PLL consist of? Draw the diagram and explain.	(8)
13.	(a)	(i)	Describe the central limit theorem.	(8)
		(ii)	Assuming X is a Gaussian random variable with $m=0$ and find the probability density function of the random v $Y=aX+b$.	$\sigma = 1$, variable (5)
			Or	
	(b)	Desc	ribe the properties of power spectral density.	(13)
4.	(a)	Expl	ain pre-emphasis and de-emphasis in FM system with ram.	a neat (13)
			Or	
	(b)	(i)	Discuss about any four properties of in-phase and quac components of a narrowband noise.	drature (8)
		(ii)	Calculate the noise voltage at the input of a television RF amusing a device that has a 200Ω equivalent noise resistan 300Ω input noise resistance. The bandwidth of the ampl 6MHz, and the temperature is 17°C.	ce and
5.	(a)	(i)	Explain the working of PWM with a neat sketch.	(9)
		(ii)	Write down the corrective measures to combat the effective aliasing.	ects of (4)
			Or	
	(b)	(i)	Write the advantages and some of the applications of PCM sys	stem.
		(ii)	Briefly describe the concept of FDM.	(8)

PART C — $(1 \times 15 = 15 \text{ marks})$

(Application/Design/Analysis/Evaluation/Creativity/Case study questions)

16. (a) (i) A random process X(t) is defined by

$$X(t) = A\cos(2\pi f_c t)$$

where A is a Gaussian-distributed random variable of zero mean and variance σ_A^2 . This random process is applied to an ideal integrator, producing the output.

$$Y(t) = \int_{0}^{t} X(\tau) d\tau$$

- Determine the probability density function of the output Y(t) at a particular time t_k.
- (2) Determine whether or not Y(t) is stationary.
- (3) Determine whether or not Y(t) is ergodic. (12)
- (ii) Compare FM and PM system.

Or

- (b) (i) A message signal $m(t) = \cos 2000\pi t + 2\cos 4000\pi t$ modulates the carrier $c(t) = 100\cos 2\pi f_c t$ where $f_c = 1MHz$ to produce the DSB signal m(t)c(t). (5 + 5)
 - Determine the expression for the upper sideband (USB) signal.
 - (2) Determine and sketch the spectrum of the USB signal.
 - (ii) Write a brief note on VSB. (5)

(3)